Optimizing the geometrical accuracy of curvilinear meshes
نویسندگان
چکیده
منابع مشابه
Optimizing the geometrical accuracy of curvilinear meshes
This paper presents a method to generate valid 2D high order meshes with optimized geometrical accuracy. The high order meshing procedure starts with a straight sided mesh. High order points are initially snapped to the real geometry without taking care of the validity of the high order elements. An optimization procedure that both allow to untangle invalid elements and to optimize the geometri...
متن کاملRobust Untangling of Curvilinear Meshes
This paper describes a technique that enables to generate high order / curvilinear meshes in a robust fashion. Accurate estimates of jacobian bounds are used for deriving an unconstrained optimization procedure. Both 2D and 3D valid high order meshes are presented that demonstrate the efficiency of the new technique.
متن کاملThe Generation of Valid Curvilinear Meshes
It is now well-known that a curvilinear discretization of the geometry is most often required to benefit from the computational efficiency of high-order numerical schemes in simulations. In this article, we explain how appropriate curvilinear meshes can be generated. We pay particular attention to the problem of invalid (tangled) mesh parts created by curving the domain boundaries. An efficient...
متن کاملGeometrical Validity of Curvilinear Finite Elements
In this paper, we describe a way to compute accurate bounds on Jacobian determinants of curvilinear polynomial finite elements. Our condition enables to guarantee that an element is geometrically valid, i.e., that its Jacobian determinant is strictly positive everywhere in its reference domain. It also provides an efficient way to measure the distortion of curvilinear elements. The key feature ...
متن کاملGeometrical validity of curvilinear pyramidal finite elements
A method to efficiently determine the geometrical validity of curvilinear finite elements of any order was recently proposed in [1]. The method is based on the adaptive expansion of the Jacobian determinant in a polynomial basis built using Bézier functions, that has both properties of boundedness and positivity. While this technique can be applied to all usual finite elements (triangles, quadr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Physics
سال: 2016
ISSN: 0021-9991
DOI: 10.1016/j.jcp.2016.01.023